首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular dynamics and free energy studies of chirality specificity effects on aminobenzo[a]quinolizine inhibitors binding to DPP-IV
Authors:Cui Wei  Liang Desheng  Gao Jian  Luo Fang  Geng Lingling  Ji Mingjuan
Affiliation:1. College of Chemistry and Chemical Engineering, Graduate University of the Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
Abstract:The aminobenzo[a]quinolizines were investigated as a novel class of DPP-IV inhibitors. The stereochemistry of this class plays an important role in the bioactivity. In this study, the mechanisms of how different configuration of three chiral centers of this class influences the binding affinity were investigated by molecular dynamics simulations, free energy decomposition analysis. The S configuration for chiral center 3* is decisive for isomers to maintain high bioactivity; the chirality effect of chiral center 2* on the binding affinity is largely dependent, while the S configuration for chiral center 2* is preferable to R configuration for the bioactivity gain; the effect of chiral center 11b* on the binding affinity is insignificant. The chirality specificity for three chiral centers is responsible for distinction of two van der Waals contacts with Tyr547 and Phe357, and of H-bonding interactions with Arg125 and Glu206. Particularly, the Arg125 to act as a bridge in the H-bonding network contributes to stable H-bonding interactions of isomer in DPP-IV active site.
Figure
The S configuration for chiral center 3* is decisive for high bioactivity; the chirality effect of chiral center 2* on binding affinity is largely dependent, while the S configuration for 2* is preferable to R for bioactivity gain; the chirality specificity for chiral center 11b* to binding affinity is insignificant.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号