首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer
Authors:Benzinger Anne  Muster Nemone  Koch Heike B  Yates John R  Hermeking Heiko
Institution:Molecular Oncology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried/Munich, Germany.
Abstract:To comprehensively identify proteins interacting with 14-3-3 sigma in vivo, tandem affinity purification and the multidimensional protein identification technology were combined to characterize 117 proteins associated with 14-3-3 sigma in human cells. The majority of identified proteins contained one or several phosphorylatable 14-3-3-binding sites indicating a potential direct interaction with 14-3-3 sigma. 25 proteins were not previously assigned to any function and were named SIP2-26 (for 14-3-3 sigma-interacting protein). Among the 92 interactors with known function were a number of proteins previously implicated in oncogenic signaling (APC, A-RAF, B-RAF, and c-RAF) and cell cycle regulation (AJUBA, c-TAK, PTOV-1, and WEE1). The largest functional classes comprised proteins involved in the regulation of cytoskeletal dynamics, polarity, adhesion, mitogenic signaling, and motility. Accordingly ectopic 14-3-3 sigma expression prevented cellular migration in a wounding assay and enhanced mitogen-activated protein kinase signaling. The functional diversity of the identified proteins indicates that induction of 14-3-3 sigma could allow p53 to affect numerous processes in addition to the previously characterized inhibitory effect on G2/M progression. The data suggest that the cancer-specific loss of 14-3-3 sigma expression by epigenetic silencing or p53 mutations contributes to cancer formation by multiple routes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号