首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The metallothionein genes of Mytilus galloprovincialis: genomic organization, tissue expression and evolution
Authors:Aceto Serena  Formisano Giulia  Carella Francesca  De Vico Gionata  Gaudio Luciano
Institution:a Department of Biological Sciences, University of Naples Federico II, 80134 Napoli, Italy
Abstract:Recently, increasing interest has been directed to the study of metallothioneins (MTs), which are small proteins that are able to bind metal ions. The induction of MT synthesis after exposure to metal or other environmental contaminants in a large number of aquatic invertebrates makes these proteins good biomarkers in water monitoring programs. Within bivalves, the species Mytilus galloprovincialis and Mytilus edulis represent model organisms for these types of studies, as well as for molecular studies regarding the expression and characterization of MT encoding genes. In the present paper, we focused on the genomic characterization, evolutionary, and tissue-expression analyses of the MT-10, MT-10 Intronless, and MT-20 genes in M. galloprovincialis. The comparison of the genomic sequences showed the presence of long nucleotide stretches within the introns of the MT genes that are conserved between M. galloprovincialis and M. edulis. These non-coding conserved sequences may contain regulatory motifs. Real-Time RT-PCR experiments revealed that, at the basal conditions, the MT-10 and MT-10 Intronless genes are expressed at levels considerably higher than the MT-20 gene, mainly in the digestive gland and gill tissue. The strong induction of the MT-20 gene expression detected in a field-collected sample is associated with the up-regulation of both the MT-10 and MT-10 Intronless genes. Evolutionary analysis revealed signals of localized positive selection that, together with the tissue-expression data, support a possible functional diversification between the MTs encoded by the MT-10 and MT-10 Intronless genes.
Keywords:Metallothionein genes  Mytilus galloprovincialis  Real-Time PCR  Introns  Molecular evolution
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号