首页 | 本学科首页   官方微博 | 高级检索  
     


Mode of interaction of aminooxy compounds with sheep liver serine hydroxymethyltransferase
Authors:N Baskaran  V Prakash  H S Savithri  A N Radhakrishnan  N Appaji Rao
Affiliation:Department of Biochemistry, Indian Institute of Science, Bangalore.
Abstract:The interaction of aminooxy compounds such as aminooxyacetate (AAA), L-canaline, and hydroxylamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) was studied by absorption spectra and stopped-flow spectrophotometry and compared with the unique feature of interaction of O-amino-D-serine (OADS) with the enzyme [Baskaran, N., Prakash, V., Appu Rao, A. G., Radhakrishnan, A. N., Savithri, H. S., & Appaji Rao, N. (1989) Biochemistry (preceding paper in this issue)]. The reaction of AAA (0.5 mM) with the Schiff base of the enzyme resulted in the formation of pyridoxal 5'-phosphate (PLP) and was biphasic with rate constants of 191 and 19 s-1. The formation of the PLP-AAA oxime measured by decrease in absorbance at 388 nm on interaction of AAA with the enzyme had a rate constant of 5.2 M-1 s-1. On the other hand, the reaction of L-canaline with the enzyme was slower as measured by the disruption of enzyme-Schiff base than the reaction of OADS and AAA. In contrast, the formation of PLP as an intermediate could not be detected upon the interaction of hydroxylamine with the enzyme. The reaction of D-cycloserine with the enzyme was much slower (1.6 x 10(2) M-1 s-1) than the aminooxy compounds. These observations indicate that the aminooxy compounds that are structural analogues of serine (OADS, AAA, and canaline) formed PLP as an intermediate prior to the formation of oxime, whereas with hydroxylamine such an intermediate could not be detected.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号