首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes
Authors:Marco van het Hoog  Timothy J Rast  Mikhail Martchenko  Suzanne Grindle  Daniel Dignard  Hervé Hogues  Christine Cuomo  Matthew Berriman  Stewart Scherer  BB Magee  Malcolm Whiteway  Hiroji Chibana  André Nantel  PT Magee
Institution:Marco van het Hoog, Timothy J Rast, Mikhail Martchenko, Suzanne Grindle, Daniel Dignard, Hervé Hogues, Christine Cuomo, Matthew Berriman, Stewart Scherer, BB Magee, Malcolm Whiteway, Hiroji Chibana, André Nantel, and PT Magee
Abstract:

Background

The 10.9× genomic sequence of Candida albicans, the most important human fungal pathogen, was published in 2004. Assembly 19 consisted of 412 supercontigs, of which 266 were a haploid set, since this fungus is diploid and contains an extensive degree of heterozygosity but lacks a complete sexual cycle. However, sequences of specific chromosomes were not determined.

Results

Supercontigs from Assembly 19 (183, representing 98.4% of the sequence) were assigned to individual chromosomes purified by pulse-field gel electrophoresis and hybridized to DNA microarrays. Nine Assembly 19 supercontigs were found to contain markers from two different chromosomes. Assembly 21 contains the sequence of each of the eight chromosomes and was determined using a synteny analysis with preliminary versions of the Candida dubliniensis genome assembly, bioinformatics, a sequence tagged site (STS) map of overlapping fosmid clones, and an optical map. The orientation and order of the contigs on each chromosome, repeat regions too large to be covered by a sequence run, such as the ribosomal DNA cluster and the major repeat sequence, and telomere placement were determined using the STS map. Sequence gaps were closed by PCR and sequencing of the products. The overall assembly was compared to an optical map; this identified some misassembled contigs and gave a size estimate for each chromosome.

Conclusion

Assembly 21 reveals an ancient chromosome fusion, a number of small internal duplications followed by inversions, and a subtelomeric arrangement, including a new gene family, the TLO genes. Correlations of position with relatedness of gene families imply a novel method of dispersion. The sequence of the individual chromosomes of C. albicans raises interesting biological questions about gene family creation and dispersion, subtelomere organization, and chromosome evolution.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号