首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biphasic cytotoxic mechanism of extracellular ATP on U-937 human histiocytic leukemia cells: involvement of adenosine generation
Authors:Schneider C  Wiendl H  Ogilvie A
Institution:Department of Biochemistry, University of Erlangen-Nuremberg, Germany. christian.schneider@med3.imed.uni-erlangen.de
Abstract:Since extracellular ATP can exhibit cytotoxic activity in vivo and in vitro, its application has been proposed as an alternative anticancer therapy. In this study we investigated the mechanisms of ATP-induced cytotoxicity in a human leukemic cell line (U-937). ATP added as a single dose exceeding 50 microM was cytostatic or even cytotoxic for U-937 cells. Interestingly, growth inhibition by ATP (50-3500 microM) showed a biphasic dose response. Up to 800 microM, ATP was cytotoxic in a dose-dependent manner (EC(50) 90 microM). In a range between 800 and 2500 microM, cell count was markedly higher despite the higher ATP concentrations. The cytotoxic effect of ATP could be antagonized by addition of uridine as a pyrimidine source and, alternatively, by addition of the nucleoside transmembrane inhibitor dipyridamole. The apoptosis-inducing adenosine A(3) receptor was not involved in measurable quantities, since (1) adenosine did not lead to an elevation of intracellular calcium levels, and (2) an unselective A(1-3) antagonist (ULS-II-80) could not abrogate the cytotoxic effect. Experiments monitoring extracellular nucleotide metabolism confirmed the assumption that the long-term production and continuous uptake of adenosine, which is extracellularly generated by degradation of ATP, led to an intracellular nucleotide imbalance with pyrimidine starvation. The biphasic dose response to higher ATP concentrations could be explained by the rapid degradation of lower ATP concentrations (300 microM) to adenosine by serum-derived enzymes, whereas higher concentrations (900 microM) only produced small amounts of adenosine due to forward inhibition of AMP hydrolysis by prolonged high ADP levels. FACS analysis revealed that at lower adenosine concentrations (300 microM) a reversible G(1) phase arrest of the cell cycle was induced, whereas higher concentrations (1000 microM) triggered apoptosis. Considering ATP as a potential cytostatic drug, our data have important implications concerning metabolic interactions of administered nucleotides.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号