首页 | 本学科首页   官方微博 | 高级检索  
     


Thyroid hormone inhibition of synaptosome amino acid uptake and protein synthesis.
Authors:M A Verity  W J Brown  M K Cheung  G T Czer
Abstract:Abstract— 3,3′,5-Triiodothyronine (T3) inhibited L-[14C]leucine uptake into synaptosomes. Inhibition was competitive with a Ki of 3.1 × 10?5m . Hofstee plot revealed an inverted hyperbolic curve suggestive of a two carrier or carrier plus diffusion mediated system for amino acid uptake. Both the carrier mediated and diffusional components were inhibited by thyroid analogues. l -Thyroxine and analogues inhibited the incorporation of l -[14C] leucine into cerebral synaptosome protein. At 50 μm , the triiodo-compounds were more inhibitory than tetraiodo->3,5-triiodo-l -thyronine >3,3′,5-triiodothyropro-pionic> l -thyroxine >3,5-diiodo-l -tyrosine. Thyroid analogue inhibition was not seen in liver or brain mitochondrial protein synthesis. 3,3′,5-Triiodothyronine had no effect on respiratory control or 2,4-DNP stimulated synaptosome respiration supported by malate plus pyruvate. Ouabain did not inhibit [14C]leucine uptake into adult synaptosomes. There was synergistic inhibition of synaptosome protein synthesis by thyroid analogues in the presence of 0.2 mm -ouabain. 3,3′,5-Triiodothyronine had no effect on synaptosome fraction ATPase or Na-K ATPase. Addition of T3 induced further inhibition of synaptosome protein synthesis in the presence of either chloramphenicol (100μm ) or cycloheximide (50μg/ml). [14C]Glycine uptake and incorporation into synaptosome protein was inhibited by 3,3′,5-triiodothyronine. There was no inhibition of [14C]proline uptake or incorporation. The above evidence and kinetic data strongly favor a selective competitive block in amino acid transport at the synaptosome membrane leading to a decreased rate of protein synthesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号