首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats
Authors:Park Yoo Heon  Kim Jong Gun  Shin Young Won  Kim Sae Hun  Whang Kwang Youn
Institution:Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea.
Abstract:This study examined the effects of Lactobacillus acidophilus ATCC 43121 (LAB) on cholesterol metabolism in hypercholesterolemia-induced rats. Four treatment groups of rats (n = 9) were fed experimental diets: normal diet, normal diet+LAB (2 x 10(6) CFU/day), hypercholesterol diet (0.5% cholesterol, w/w), and hypercholesterol diet + LAB. Body weight, feed intake, and feed efficiency did not differ among the four groups. Supplementation with LAB reduced total serum cholesterol (25%) and VLDL + IDL + LDL cholesterol (42%) in hypercholesterol diet groups, although hepatic tissue cholesterol and lipid contents were not changed. In the normal diet group, cholesterol synthesis (HMG-CoA reductase expression), absorption (LDL receptor expression), and excretion via bile acids (cholesterol 7 alpha-hydroxylase expression) were increased by supplementation with LAB, and increased cholesterol absorption and decreased excretion were found in the hypercholesterol diet group. Total fecal acid sterols excretion was increased by supplementation with LAB. With proportional changes in both normal and hypercholesterol diet groups, primary bile acids (cholic and chenodeoxycholic acids) were reduced, and secondary bile acids (deoxycholic and lithocholic acids) were increased. Fecal neutral sterol excretion was not changed by LAB. In this experiment, the increase in insoluble bile acid (lithocholic acid) reduced blood cholesterol level in rats fed hypercholesterol diets supplemented with LAB. Thus, in the rat, L. acidophilus ATCC 43121 is more likely to affect deconjugation and dehydroxylation during cholesterol metabolism than the assimilation of cholesterol into cell membranes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号