首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Substrate specificity of the epoxidation reaction in sex pheromone biosynthesis of the Japanese giant looper (Lepidoptera: Geometridae)
Institution:1. Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China;2. Department of Ophthalmology, Laixi Municipal Hospital, Qingdao, Shandong Province, China
Abstract:Female moths of the Japanese giant looper (Ascotis selenaria cretacea, Lepidoptera: Geometridae) secrete (Z,Z)-6,9-cis-3,4-epoxynonadecadiene as a sex pheromone component. To the pheromone glands of the decapitated females, 19,19,19-D3](Z,Z,Z)-3,6,9-nonadecatriene was applied after an injection of pheromone biosynthesis activating neuropeptide. GC-MS analysis of the gland extract showed its specific conversion into the pheromonal cis-3,4-epoxide indicating that the C19 triene which had been identified in the gland was a precursor of the pheromone. In order to examine the substrate specificity of the enzyme catalyzing this epoxidation step, several unsaturated hydrocarbons not occurring in the gland were applied to it. Not only (Z,Z,Z)-3,6,9-trienes with varying chain lengths (C17, C18 and C20 to C22) but (Z,Z)-3,6-dienes (C17, C19 and C20) were converted into the corresponding cis-3,4-epoxides in a rather good yield, while no 6,7- and 9,10-epoxides could be detected. (Z)-3-Nonadecene was also changed to the cis-epoxide, but (E)-3-, (Z)-2- and (Z)-4-double bonds in the C19 chain were not oxidized. These in vivo experiments revealed that the monooxygenase regiospecifically attacked the (Z)-3-double bond of straight chain hydrocarbons regardless of their length and degree of unsaturation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号