CPEB3 Deficiency Elevates TRPV1 Expression in Dorsal Root Ganglia Neurons to Potentiate Thermosensation |
| |
Authors: | Sitt Wai Fong Hsiu-Chen Lin Meng-Fang Wu Chih-Cheng Chen Yi-Shuian Huang |
| |
Affiliation: | Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan;Boston Children’s Hospital and Harvard Medical School, UNITED STATES |
| |
Abstract: | Cytoplasmic polyadenylation element binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein that downregulates translation of multiple plasticity-related proteins (PRPs) at the glutamatergic synapses. Activity-induced synthesis of PRPs maintains long-lasting synaptic changes that are critical for memory consolidation and chronic pain manifestation. CPEB3-knockout (KO) mice show aberrant hippocampus-related plasticity and memory, so we investigated whether CPEB3 might have a role in nociception-associated plasticity. CPEB3 is widely expressed in the brain and peripheral afferent sensory neurons. CPEB3-KO mice with normal mechanosensation showed hypersensitivity to noxious heat. In the complete Freund''s adjuvant (CFA)-induced inflammatory pain model, CPEB3-KO animals showed normal thermal hyperalgesia and transiently enhanced mechanical hyperalgesia. Translation of transient receptor potential vanilloid 1 (TRPV1) RNA was suppressed by CPEB3 in dorsal root ganglia (DRG), whereas CFA-induced inflammation reversed this inhibition. Moreover, CPEB3/TRPV1 double-KO mice behaved like TRPV1-KO mice, with severely impaired thermosensation and thermal hyperalgesia. An enhanced thermal response was recapitulated in non-inflamed but not inflamed conditional-KO mice, with cpeb3 gene ablated mostly but not completely, in small-diameter nociceptive DRG neurons. CPEB3-regulated translation of TRPV1 RNA may play a role in fine-tuning thermal sensitivity of nociceptors. |
| |
Keywords: | |
|
|