首页 | 本学科首页   官方微博 | 高级检索  
     


Club Cell-16 and RelB as Novel Determinants of Arterial Stiffness in Exacerbating COPD Patients
Authors:Laura E. Labonté   Jean Bourbeau  Stella S. Daskalopoulou  Michele Zhang  Patrick Coulombe  Katie Garland  Carolyn J. Baglole
Abstract:

Background

Exacerbations of chronic obstructive pulmonary disease (COPD) are acute events of worsened respiratory symptoms that may increase the risk of cardiovascular disease (CVD), a leading cause of mortality amongst COPD patients. The utility of lung-specific inflammatory mediators such as club cell protein-16 (CC-16) and surfactant protein D (SPD) and that of a novel marker of CV outcomes in COPD- RelB- in predicting adverse cardiovascular events during exacerbation is not known.

Methods

Thirty-eight subjects with COPD admitted to the hospital for severe exacerbation were included in this analysis. Clinical, physiological and arterial stiffness measurements were performed within 72 hours of admission; this was followed by measurements taken every 3 days until hospital discharge, then once a week until 30 days after discharge, and then again at 90 and 180 days. Plasma concentrations of inflammatory mediators were measured from peripheral venous blood taken at admission, and at days 15, 30, 90 and 180.

Results

CC-16 and RelB concentrations were increased at day 15 of exacerbations whereas SPD concentrations were decreased. The course of change in CC-16 and RelB levels over time was inversely associated with that of carotid-femoral pulse wave velocity, the gold-standard measure of arterial stiffness. Increases in CC-16 could predict a decreased number of subsequent exacerbations during follow-up.

Conclusions

Lung-specific (CC-16) and novel (RelB) biomarkers are associated with systemic cardiovascular changes over time. CC-16 can predict subsequent exacerbations in subjects with severe COPD and may be an important biomarker of pulmonary and systemic stress in COPD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号