首页 | 本学科首页   官方微博 | 高级检索  
     


The metabolism of serine and glycine in mutant lines of Chinese hamster ovary cells
Authors:W Pfendner  L I Pizer
Affiliation:Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104 U.S.A.
Abstract:This report describes studies of mutant lines of cultured Chinese hamster ovary cells that have different levels of serine transhydroxymethylase (EC 2.1.2.1). This enzyme, which splits serine to yield glycine and N5,N10-methylene tetrahydrofolic acid, is found in both the mitochondria and cytosol of these cells (see Chasin et al. (1974) Proc. Nat. Acad. Sci. USA71, 718–722). Our experiments with these mutant lines have established a correlation among the amount of mitochondrial serine transhydroxymethylase, the intracellular glycine concentration, and the extent that exogenous serine increases the glycine pool. Limited amino acid incorporation into protein occurred with all cell lines, but in contrast to the glycine-requiring mutant line 51-11, revertants that no longer required glycine for growth showed increased incorporation when the medium was supplemented with serine. These results indicate that normally the mitochondrial serine transhydroxymethylase together with the intracellular serine concentration regulate the supply of glycine and under certain conditions can control the rate of protein synthesis. Additional experiments with radioactive serine and glycine have shown that the mitochondrial serine transhydroxymethylase regulates the interconversion of these amino acids as well as serine oxidation. Calculations based on the 14CO2 produced from l-[14C]serine by the mutant and parental cell lines indicate that approximately 50% of the serine oxidized is initially converted to glycine and an oxidizable one-carbon unit.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号