首页 | 本学科首页   官方微博 | 高级检索  
     


Insulin activation of mitogen-activated protein kinases Erk1,2 is amplified via beta-adrenergic receptor expression and requires the integrity of the Tyr350 of the receptor
Authors:Wang H y  Doronin S  Malbon C C
Affiliation:Department of Physiology and Biophysics, Diabetes and Metabolic Diseases Research Program, University Medical Center, State University of New York, Stony Brook, New York 11794-8661, USA.
Abstract:Insulin activates a complex set of intracellular responses, including the activation of mitogen-activated protein kinases Erk1,2. The counterregulatory actions of insulin on catecholamine action are well known and include phosphorylation of the beta(2)-adrenergic receptor on Tyr(350), Tyr(354), and Tyr(364) in the C-terminal cytoplasmic domain, as well as enhanced sequestration of the beta(2)-adrenergic receptor. Both beta-adrenergic agonists and insulin provoke sequestration of beta(2)-adrenergic receptors in a synergistic manner. In the current work, cross-talk between insulin action and beta(2)-adrenergic receptors revealed that insulin activation of Erk1,2 was amplified via beta(2)-adrenergic receptors. In Chinese hamster ovary cells, expression of beta(2)-adrenergic receptors enhanced 5-10-fold the activation of Erk1,2 by insulin and prolonged the activation, the greatest enhancement occurring at 5 min post-insulin. The potentiation of insulin signaling on Erk1,2 was proportional to the level of expression of beta(2)-adrenergic receptor. The potentiation of insulin signaling requires the integrity of Tyr(350) of the beta(2)-adrenergic receptor, a residue phosphorylated in response to insulin. beta(2)-adrenergic receptors with a Y350F mutation failed to potentiate insulin activation of Erk1,2. Expression of the C-terminal domain of the beta(2)-adrenergic receptor (Pro(323)-Leu(418)) in cells expressing the intact beta(2)-adrenergic receptor acts as a dominant negative, blocking the potentiation of insulin activation of Erk1,2 via the beta(2)-adrenergic receptor. Blockade of beta(2)-adrenergic receptor sequestration does not alter the ability of the beta(2)-adrenergic receptor to potentiate insulin action on Erk1,2. We propose a new paradigm in which a G-protein-linked receptor, such as the beta(2)-adrenergic receptor, itself acts as a receptor-based scaffold via its binding site for Src homology 2 domains, facilitating signaling of the mitogen-activated protein kinase pathway by insulin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号