首页 | 本学科首页   官方微博 | 高级检索  
   检索      

Burkholderia sp. IDO3中靛蓝合成基因的克隆表达及其合成特性
引用本文:刘紫嫣,马桥,由胜男,张旭旺,张西迪,殷庆鑫,李炫莹,厉舒祯,张照婧,曲媛媛.Burkholderia sp. IDO3中靛蓝合成基因的克隆表达及其合成特性[J].微生物学通报,2017,44(11):2634-2643.
作者姓名:刘紫嫣  马桥  由胜男  张旭旺  张西迪  殷庆鑫  李炫莹  厉舒祯  张照婧  曲媛媛
作者单位:1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024;2. 大连理工大学食品与环境学院 工业生态与环境工程教育部重点实验室 辽宁 盘锦 124000,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024,1. 大连理工大学环境学院 工业生态与环境工程教育部重点实验室 辽宁 大连 116024
基金项目:国家自然科学基金项目(No. 51508068);新世纪优秀人才支持计划项目(No. NCET-13-0077);中央高校基本科研业务费专项项目(No. DUT14YQ107);高等学校学科创新引智计划资助项目(No. B13012)
摘    要:【目的】克隆和表达靛蓝合成基因,并将其用于靛蓝合成研究。【方法】对菌株Burkholderia sp.IDO3中靛蓝合成基因进行克隆和大肠杆菌异源表达,构建能合成蓝色色素的基因工程菌。利用液相色谱和质谱对产物进行分析,采用单因素法对培养温度、转速、培养基成分等进行优化,并考察优化条件下的靛蓝合成曲线。【结果】构建了一株重组大肠杆菌E.coli IND_AB,该菌株能够在LB培养基生长的过程中合成蓝色色素,产物分析表明该色素为靛蓝;菌株IND_AB在30°C和150 r/min条件下能在LB培养基中合成22.9 mg/L靛蓝,优化培养条件后产量达到25.4 mg/L;优化LB培养基各组分浓度后产量可提高到35.1 mg/L;外加50.0 mg/L吲哚或0.1 g/L色氨酸后靛蓝产量可分别提高到57.7 mg/L和64.4 mg/L,相比初始产量提高了152.0%和181.2%;靛蓝合成曲线表明在添加吲哚或色氨酸的培养基中,菌株IND_AB前6 h没有靛蓝生成,6-15 h为靛蓝合成加速期,18 h达到产量平衡。【结论】重组大肠杆菌IND_AB可用于生物合成高纯度靛蓝,为靛蓝的微生物合成提供了有效的基因资源。

关 键 词:靛蓝合成基因,吲哚,色氨酸,微生物合成

Cloning, expression and application of an indigo-producing gene from Burkholderia sp. IDO3
LIU Zi-Yan,MA Qiao,YOU Sheng-Nan,ZHANG Xu-Wang,ZHANG Xi-Di,YIN Qing-Xin,LI Xuan-Ying,LI Shu-Zhen,ZHANG Zhao-Jing and QU Yuan-Yuan.Cloning, expression and application of an indigo-producing gene from Burkholderia sp. IDO3[J].Microbiology,2017,44(11):2634-2643.
Authors:LIU Zi-Yan  MA Qiao  YOU Sheng-Nan  ZHANG Xu-Wang  ZHANG Xi-Di  YIN Qing-Xin  LI Xuan-Ying  LI Shu-Zhen  ZHANG Zhao-Jing and QU Yuan-Yuan
Institution:1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China,1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China,1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China,1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China;2. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environmental Science and Technology, Dalian University of Technology, Panjin, Liaoning 124000, China,1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China,1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China,1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China,1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China,1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China and 1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
Abstract:Objective] An indigo-producing gene was cloned and expressed, and its application in indigo production was investigated. Methods] An indigo-producing gene from Burkholderia sp. IDO3 was cloned and heterogeneously expressed in Escherichia coli BL21(DE3). Recombinant strain was able to produce blue pigments. HPLC and LC/MS were applied to analyze the reaction product. The conditions for indigo production, such as rotary speed, temperature, and growth medium components were optimized, and indigo-producing curve was also determined under the optimal conditions. Results] Recombinant strain IND_AB was successfully constructed and could produce blue pigment in LB medium. Product analysis revealed the blue pigment was indigo. Strain IND_AB could generate 22.9 mg/L indigo when incubated at 30 °C and 150 r/min. The indigo yield was improved to 25.4 mg/L and 35.1 mg/L after optimization of environmental parameters and medium components. The indigo yield was subsequently enhanced to 57.7 mg/L and 64.4 mg/L with the addition of 50 mg/L indole and 0.1 g/L tryptophan, which rose by 152.0% and 181.2% compared with initial yield. Time-course analysis indicated that there was no indigo production in the previous 6 h, and indigo was exponentially produced between 6?15 h and reached the maximum at 18 h. Conclusion] Recombinant strain IND_AB could produce relatively pure indigo, and present study provided efficient genetic resource for indigo microbial production.
Keywords:Indigo-producing gene  Indole  Tryptophan  Microbial synthesis
本文献已被 CNKI 等数据库收录!
点击此处可从《微生物学通报》浏览原始摘要信息
点击此处可从《微生物学通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号