首页 | 本学科首页   官方微博 | 高级检索  
     


Quantification of the Contribution of CO2, HCO3-, and External Carbonic Anhydrase to Photosynthesis at Low Dissolved Inorganic Carbon in Chlorella saccharophila
Authors:Williams T. G.  Colman B.
Affiliation:Department of Biology, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3.
Abstract:cDNAs encoding the large subunit and a possibly truncated small subunit of the potato tuber (Solanum tuberosum L.) adenosine 5'-diphosphate-glucose pyrophosphorylase have been expressed in Escherichia coli (A.A. Iglesias, G.F. Barry, C. Meyer, L. Bloksberg, P.A. Nakata, T. Greene, M.J. Laughlin, T.W. Okita, G.M. Kishore, J. Preiss, J Biol Chem [1993] 268: 1081-1086). However, some properties of the transgenic enzyme were different from those reported for the enzyme from potato tuber. In this work, extension of the cDNA was performed to elongate the N terminus of the truncated small subunit by 10 amino acids. This extension is based on the almost complete conservation seen at the N-terminal sequence for the potato tuber and the spinach leaf small subunits. Expressing the extended cDNA in E. coli along with the large subunit cDNA yielded a transgenic heterotetrameric enzyme with similar properties to the purified potato tuber enzyme. It was also found that the extended small subunit expressed by itself exhibited high enzyme activity, with lower affinity for activator 3-phosphoglycerate and higher sensitivity toward inorganic phosphate inhibition. It is proposed that a major function of the large subunit of adenosine 5'-diphosphate-glucose pyrophosphorylases from higher plants is to modulate the regulatory properties of the native heterotetrameric enzyme, and the small subunit's major function is catalysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号