首页 | 本学科首页   官方微博 | 高级检索  
     


Enzymatically mediated engineering of multivalent MHC class II-peptide chimeras
Authors:Casares S  Bona C A  Brumeanu T D
Affiliation:Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
Abstract:We previously reported the genetic engineering of the first soluble, bivalent major histocompatibility complex (MHC) class II-peptide ligand for T-cell receptor (TCR). This ligand binds stably and specifically to cognate T-cells and exhibits immunomodulatory effects in vitro and in vivo. The increase in valence of MHC class II-peptide ligands was shown to parallel their avidity for cognate TCRs and potency in stimulating cognate T-cells. We describe a new enzymatic method to increase the valence of MHC-peptide ligands by cross-linking the N-glycan moieties of dimeric MHC II-peptide units through a flexible, bifunctional polyethylene glycol linker. Using this method, we generated covalently stabilized tetravalent and octavalent MHC II-peptide ligands which bound stably and specifically to cognate TCR and preserved their structural integrity in blood and lymphoid organs for 72 h. Depending on the TCR/CD4 occupancy and degree of TCR/CD4 co-clustering, the multivalent MHC II-peptide ligands polarized efficiently the antigen-specific CD4(+) T-cells toward type 2 cell differentiation or induced T-cell anergy and apoptosis. The enzymatically mediated engineering of multivalent MHC-peptide ligands for cognate TCRs may provide rational grounds for the development of new therapeutic agents endowed with strong modulatory effects on antigen-specific T-cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号