首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chromatic variation of the abundance of PSII complexes observed with the red alga Prophyridium cruentum.
Authors:Y Fujita
Institution:Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, 917-0003 Japan. fujitay@fpu.ac.jp
Abstract:Chromatic regulation of photosystem stoichiometry in cyanophytes, green algae and probably vascular plants is achieved by regulation of the abundance of PSI in response to thylakoid electron transport state at least under our experimental conditions cf. Fujita (1997) Photosyn. Res. 53: 83]. However, variation of not only PSI but also PSII, in reverse of each other, is characteristic of the stoichiometry regulation in red algae and some of marine cyanophytes. Our previous study with the red alga Porphyridium cruentum has revealed that PSII is inactivated by 50% upon a light shift from the light absorbed by Chl a, PSI light, to that mainly absorbed by phycobilisomes (PBS), PSII light Fujita (1999) Plant Cell Physiol. 40: 924]. To evaluate the contribution of the photoinactivation to the chromatic variation of PSII, variation of the abundance of PSI, PSII and PBS, together with the fluorescence parameter and the activity of PSII, was followed after a light shift from PSI light to PSII light. Upon a light shift to PSII light, PSII, determined as Cyt b(559) per PBS, decreased rapidly, following the photoinactivation, down to the level a half of that before the light shift, and remained constant. Since the increase in PBS was not significant during this period, a rapid decrease of PSII/PBS led us to tentatively conclude that the degradation of PSII is a main cause for variation of the abundance of PSII. Photoinactivation of PSII, and also decrease in Cyt b(559), was accelerated, but only slightly, by the addition of chloramphenicol (CAP) at a moderate concentration while CAP at the same concentration significantly suppressed the increment of PSI determined as P700. A selective effect of CAP supports the above conclusion.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号