首页 | 本学科首页   官方微博 | 高级检索  
     


Trichloroamine complexes of platinum: preparation,crystal structure and solution behavior of cytosinium trichlorocytosineplatinate(II)
Affiliation:1. Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, Isfahan university, Isfahan, Iran;2. Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran
Abstract:A complex containing a protonated and N3-platinated cytosine (C), [CH][Cl3Pt(C)] (1a) has been prepared, converted into its K[Cl3Pt(C)] (1b) and NH4[Cl3]Pt(C)]·H2O (1c) analogs, and structurally characterized (X-ray, Raman, NMR). Reaction of 1b with L = 1-methylcytosine and with L = Me2SO gave the neutral mixed-ligand complexes cis-Cl2Pt(C)L. Excess NH3 was used to convert the anion of 1b into the cation [(NH3)3Pt(C)]2+ (3a). The pKa of the N(1)H proton in 3a is 9.4, as determined by UV spectroscopy. The N(1)H is displaced by Pt(II) electrophiles even at neutral pH to give N3,N1-diplatinated cytosinato complexes, as shown by 1H NMR (3J coupling or 195Pt at N(1) with H6, 29 Hz, and 4J coupling of 195Pt at N(3) with H5, 14Hz). The results of the X-ray structure determination of 1a (R = 0.031, Rw = 0.034) are of relevance in that they permit a direct comparison of the effect of a proton as opposed to that of a Pt electrophile on the nucleobase geometry. Moreover, the expected decrease in CO(2) bond length as a consequence of Pt binding is observed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号