首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Minimization of lung pressure swings during high-frequency ventilation: a model
Authors:Khoo  M C; Yamashiro  S M; Yamashiro  P
Institution:Department of Biomedical Engineering, University of Southern California, Los Angeles 90089.
Abstract:The goal of this theoretical study was to develop a simple computational model for determining the lung pressure excursions that accompany the maintenance of adequate gas transport through high-frequency airway oscillations applied via the trachea (HFAO) and by transthoracic means (HFTO). Respiratory mechanics and gas transport parameters estimated from the preceding companion study (J. Appl. Physiol. 67: 985-992, 1989) were used in the model for computing tracheal, alveolar, pleural, and transpulmonary pressure swings. Comparison of model predictions with corresponding data obtained in dogs showed close agreement. The specification of eucapnia as a constraint led to results that were significantly different from previous findings which had assumed constant airflow. We used the model to identify "quasi-optimal" strategies for HFAO and HFTO application in which all pressure excursions were kept below the corresponding levels produced by conventional mechanical ventilation operating at 15 breaths/min. The model suggests the application of both HFAO and HFTO at frequencies substantially lower than the settings commonly employed in high-frequency ventilation. Application of HFAO at frequencies ranging from 1 to 4 Hz is recommended, whereas for HFTO the quasi-optimal range lies between 1 and 1.7 Hz. In patients with chronic obstructive pulmonary disease, pressure costs during HFAO or HFTO are minimized in the vicinity of 1 Hz.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号