首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The higher resistance to chilling stress in adaxial side of <Emphasis Type="Italic">Rumex</Emphasis> K-1 leaves is accompanied with higher photochemical and non-photochemical quenching
Authors:P-M Li  P Fang  W-B Wang  H-Y Gao  T Peng
Institution:1.State Key Laboratory of Crop Biology; College of Life Sciences,Shandong Agricultural University,Tai’an,China;2.Department of Horticulture,Cornell University,Ithaca,USA
Abstract:Responses of two sides of Rumex K-1 leaves to chilling stress (5 °C, photon flux density of 100 μmol m−2 s−1) were studied by using gas exchange, chlorophyll (Chl) fluorescence, and spectrum reflectance techniques. The Chl and carotenoid contents in the two sides were not affected by chilling treatment, and both were higher in the adaxial side. The maximum quantum yield of photosystem (PS) 2 and fraction of functional PS1 in the abaxial side decreased more markedly than those in the adaxial side during the chilling treatment, indicating that the abaxial side was damaged more significantly than the adaxial side. Before chilling, there were no obvious differences in actual photochemical efficiency of PS2, photosynthesis, and photorespiration between two sides of the leaves. Under chilling stress, the actual photochemical efficiency of PS2, photosynthesis, and photorespiration all declined more significantly in the abaxial side, which was partly attributed to lower carboxylation efficiency in the abaxial side than that in the adaxial side. Non-photochemical quenching was higher in the adaxial side, though the de-epoxidation of xanthophyll cycle pigments’ pool on basis of Chl was higher in the abaxial side. Both the slower decrease in the photochemical quenching and the higher non-photochemical quenching may account for the higher resistance to chilling stress in the adaxial side of Rumex K-1 leaves.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号