首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carotid plaque age is a feature of plaque stability inversely related to levels of plasma insulin
Authors:Hägg Sara  Salehpour Mehran  Noori Peri  Lundström Jesper  Possnert Göran  Takolander Rabbe  Konrad Peter  Rosfors Stefan  Ruusalepp Arno  Skogsberg Josefin  Tegnér Jesper  Björkegren Johan
Institution:The Cardiovascular Genomics Group, Department of Medical Biochemistry and Biophysics, Solna, Karolinska Institutet, Stockholm, Sweden.
Abstract:

Background

The stability of atherosclerotic plaques determines the risk for rupture, which may lead to thrombus formation and potentially severe clinical complications such as myocardial infarction and stroke. Although the rate of plaque formation may be important for plaque stability, this process is not well understood. We took advantage of the atmospheric 14C-declination curve (a result of the atomic bomb tests in the 1950s and 1960s) to determine the average biological age of carotid plaques.

Methodology/Principal Finding

The cores of carotid plaques were dissected from 29 well-characterized, symptomatic patients with carotid stenosis and analyzed for 14C content by accelerator mass spectrometry. The average plaque age (i.e. formation time) was 9.6±3.3 years. All but two plaques had formed within 5–15 years before surgery. Plaque age was not associated with the chronological ages of the patients but was inversely related to plasma insulin levels (p = 0.0014). Most plaques were echo-lucent rather than echo-rich (2.24±0.97, range 1–5). However, plaques in the lowest tercile of plaque age (most recently formed) were characterized by further instability with a higher content of lipids and macrophages (67.8±12.4 vs. 50.4±6.2, p = 0.00005; 57.6±26.1 vs. 39.8±25.7, p<0.0005, respectively), less collagen (45.3±6.1 vs. 51.1±9.8, p<0.05), and fewer smooth muscle cells (130±31 vs. 141±21, p<0.05) than plaques in the highest tercile. Microarray analysis of plaques in the lowest tercile also showed increased activity of genes involved in immune responses and oxidative phosphorylation.

Conclusions/Significance

Our results show, for the first time, that plaque age, as judge by relative incorporation of 14C, can improve our understanding of carotid plaque stability and therefore risk for clinical complications. Our results also suggest that levels of plasma insulin might be involved in determining carotid plaque age.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号