首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal acclimation of shoot respiration in an Arctic woody plant species subjected to 22 years of warming and altered nutrient supply
Authors:Mary A. Heskel  Heather E. Greaves  Matthew H. Turnbull  Odhran S. O'Sullivan  Gaius R. Shaver  Kevin L. Griffin  Owen K. Atkin
Affiliation:1. Research School of Biology, Division of Plant Sciences, , Canberra, ACT 0200 Australia;2. Department of Forest, Rangeland, and Fire Sciences, University of Idaho, , Moscow, Idaho, 83844‐1135 USA;3. School of Biological Sciences, University of Canterbury, , Christchurch, Canterbury, 8140 New Zealand;4. The Ecosystems Center, Marine Biological Laboratory, Woods Hole, , Falmouth, MA, 02543 USA;5. Earth and Environmental Sciences, Columbia University, , Palisades, NY, 10964 USA
Abstract:Despite concern about the status of carbon (C) in the Arctic tundra, there is currently little information on how plant respiration varies in response to environmental change in this region. We quantified the impact of long‐term nitrogen (N) and phosphorus (P) treatments and greenhouse warming on the short‐term temperature (T) response and sensitivity of leaf respiration (R), the high‐T threshold of R, and associated traits in shoots of the Arctic shrub Betula nana in experimental plots at Toolik Lake, Alaska. Respiration only acclimated to greenhouse warming in plots provided with both N and P (resulting in a ~30% reduction in carbon efflux in shoots measured at 10 and 20 °C), suggesting a nutrient dependence of metabolic adjustment. Neither greenhouse nor N+P treatments impacted on the respiratory sensitivity to T (Q10); overall, Q10 values decreased with increasing measuring T, from ~3.0 at 5 °C to ~1.5 at 35 °C. New high‐resolution measurements of R across a range of measuring Ts (25–70 °C) yielded insights into the T at which maximal rates of R occurred (Tmax). Although growth temperature did not affect Tmax, N+P fertilization increased Tmax values ~5 °C, from 53 to 58 °C. N+P fertilized shoots exhibited greater rates of R than nonfertilized shoots, with this effect diminishing under greenhouse warming. Collectively, our results highlight the nutrient dependence of thermal acclimation of leaf R in B. nana, suggesting that the metabolic efficiency allowed via thermal acclimation may be impaired at current levels of soil nutrient availability. This finding has important implications for predicting carbon fluxes in Arctic ecosystems, particularly if soil N and P become more abundant in the future as the tundra warms.
Keywords:Arctic tundra  Betula nana  nitrogen  phosphorus  Q10  stems
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号