首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Luminescence analysis of SrGa2Si2O8: RE3+ (RE = Dy,Tm) phosphors
Authors:Monali RKadukar  S J Dhoble  A K Sahu  V Nayar  S Sailaja  B Sudhakar Reddy
Institution:1. Department of Physics, R.T.M.Nagpur University, Nagpur, Maharashtra, India;2. Department of Physics, C.M.D.P.G.College, Bilaspur, Chattisgarh, India;3. Department of Physics, Sri Venkateswara Degree College, Kadapa, Andhra Pradesh, India
Abstract:This article reports on the luminescence properties of rare earth (Dy3+ and Tm3+)ions doped SrGa2Si2O8 phosphor were studied. SrGa2Si2O8phosphors weresynthesizedby employing solid state reaction method.From the measured X‐ray diffraction (XRD) pattern of the samplemonoclinic phase structure has been observed. Thermoluminescenceand Mechanoluminescence properties of the γ‐ray irradiated samples have been studied. Photoluminescence spectra of Dy3+ activated SrGa2Si2O8phosphor has been measured with an excitation wavelength at 348 nm,and it shows two emission bands at 483 and 574 nm due to 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions respectively. Whereas the photoluminescence spectra of Tm3+ activated SrGa2Si2O8 phosphor has been measured with an excitation wavelength at 359 nm and it exhibits two emission bands at 454 and 472 nm due to 1D2 → 3F4 and1G4 → 3H6 transitions respectively. In thermoluminescence study, γ‐irradiatedthermoluminescence glow curve of SrGa2Si2O8:Dy3+ phosphor shows two well defined peaks at 293 °C (peak1)and 170 °C (peak2) whereas thermoluminescence glow curve of SrGa2Si2O8:Tm3+ phosphor shows peaks at 292 °C (peak1) and 184 °C (peak2) indicating that two sets of traps are being activated within the particular temperature range and the trapping parameters associated with the prominent glow peaks of SrGa2Si2O8:Dy3+ and SrGa2Si2O8:Tm3+ are calculated using Chen's peak shape and initial rise method.From the Mechanoluminescence study, only one glow peak has been observed. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:mechanoluminescence  photoluminescence  thermoluminescence  trappingparameters
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号