首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards
Authors:Débora Lina Moreno Azócar  Bieke Vanhooydonck  Marcelo F Bonino  M Gabriela Perotti  Cristian S Abdala  James A Schulte  Félix B Cruz
Institution:1. Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium
5. Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400, Río Negro, Argentina
2. Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400, Río Negro, Argentina
3. Facultad de Ciencias Naturales e I. M. Lillo (UNT), CONICET-Instituto de Herpetología (FML), Tucumán, Argentina
4. Department of Biology, Clarkson University, Potsdam, NY, USA
Abstract:The importance of the thermal environment for ectotherms and its relationship with thermal physiology and ecology is widely recognized. Several models have been proposed to explain the evolution of the thermal biology of ectotherms, but experimental studies have provided mixed support. Lizards from the Liolaemus goetschi group can be found along a wide latitudinal range across Argentina. The group is monophyletic and widely distributed, and therefore provides excellent opportunities to study the evolution of thermal biology. We studied thermal variables of 13 species of the L. goetschi group, in order to answer three questions. First, are aspects of the thermal biology of the L. goetschi group modelled by the environment or are they evolutionarily conservative? Second, have thermal characteristics of these animals co-evolved? And third, how do the patterns of co-evolution observed within the L. goetschi group compare to those in a taxonomically wider selection of species of Liolaemus? We collected data on 13 focal species and used species information of Liolaemus lizards available in the literature and additional data obtained by the authors. We tackled these questions using both conventional and phylogenetically based analyses. Our results show that lizards from the L. goetschi group and the genus Liolaemus in general vary in critical thermal minimum in relation to mean air temperature, and particularly the L. goetschi group shows that air temperature is associated with critical thermal range, as well as with body temperature. Although the effect of phylogeny cannot be ignored, our results indicate that these thermal biology aspects are modelled by cold environments of Patagonia, while other aspects (preferred body temperature and critical thermal maximum) are more conservative. We found evidence of co-evolutionary patterns between critical thermal minimum and preferred body temperature at both phylogenetic scales (the L. goetschi group and the extended sample of 68 Liolaemus species).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号