首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conversion of a putative Agrobacterium sugar-binding protein into a FRET sensor with high selectivity for sucrose
Authors:Lager Ida  Looger Loren L  Hilpert Melanie  Lalonde Sylvie  Frommer Wolf B
Institution:Carnegie Institution, Department of Plant Biology, Stanford, California 94305, USA.
Abstract:Glucose is the main sugar transport form in animals, whereas plants use sucrose to supply non-photosynthetic organs with carbon skeletons and energy. Many aspects of sucrose transport, metabolism, and signaling are not well understood, including the route of sucrose efflux from leaf mesophyll cells and transport across vacuolar membranes. Tools that can detect sucrose with high spatial and temporal resolution in intact organs may help elucidate the players involved. Here, FRET sensors were generated by fusing putative sucrose-binding proteins to green fluorescent protein variants. Plant-associated bacteria such as Rhizobium and Agrobacterium can use sucrose as a nutrient source; sugar-binding proteins were, thus, used as scaffolds for developing sucrose nanosensors. Among a set of putative sucrose-binding protein genes cloned in between eCFP and eYFP and tested for sugar-dependent FRET changes, an Agrobacterium sugar-binding protein bound sucrose with 4 mum affinity. This FLIPsuc-4mu protein also recognized other sugars including maltose, trehalose, and turanose and, with lower efficiency, glucose and palatinose. Homology modeling enabled the prediction of binding pocket mutations to modulate the relative affinity of FLIPsuc-4mu for sucrose, maltose, and glucose. Mutant nanosensors showed up to 50- and 11-fold increases in specificity for sucrose over maltose and glucose, respectively, and the sucrose binding affinity was simultaneously decreased to allow detection in the physiological range. In addition, the signal-to-noise ratio of the sucrose nanosensor was improved by linker engineering. This novel reagent complements FLIPs for glucose, maltose, ribose, glutamate, and phosphate and will be used for analysis of sucrose-derived carbon flux in bacterial, fungal, plant, and animal cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号