首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effects of nutrient availability and removal of competing vegetation on resprouter capacity and nutrient accumulation in the shrub Erica multiflora
Institution:1. Ecophysiology Unit CSIC-CEAB-CREAF. CREAF (Center for Ecological Research and Forestry Applications), Autonomous University of Barcelona, E- 08193 Bellaterra, Spain;2. Department of Animal and Plant Biology and Ecology, CREAF (Center for Ecological Research and Forestry Applications) and Unit of Ecology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
Abstract:Nutrient availability is increasing in the Mediterranean Basin due to the great number and intensity of fires and higher levels of anthropomorphic pollution. In the experiment described in this paper, we aimed to determine the effects of N and P availability and of the removal of competing vegetation on resprouter capacity, biomass, and nutrient accumulation in Erica multiflora. Plants of the resprouter species E. multiflora were clipped to 0% of aerial biomass in a post-fire Mediterranean shrubland and fertilisation experiments and removal of competing vegetation were established in a factorial design. The resprouting of clipped plants was monitored during the first year after clipping and at the end of the year, all plant resprout populations were harvested and their resprout structure, biomass and N and P content measured. N fertilisation had no significant effect on leaf biomass either at plant level or on the total aerial biomass per stump unit area; however N concentration in resprout biomass did increased. P fertilisation slightly increased resprouting vigour and had a significant effect on P content of the leaf biomass. The removal of competing vegetation increased the ratio between leaf biomass and stem biomass, the lateral expansion of resprout, the hierarchy of resprouts branching, and the P content of stems, above all when P fertilisation was applied. These results show that as a response to decreased competition E. multiflora has the capacity to modify the relative proportions of the nutrients in the aerial biomass. All these characteristics allow E. multiflora to persist in increasingly disturbed Mediterranean ecosystems and contribute to the retention of nutrients in the ecosystem during early resprouting phases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号