首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes
Authors:Delgado Dolores  Alonso-Blanco Carlos  Fenoll Carmen  Mena Montaña
Institution:1Departamento de Ciencias Ambientales, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071-Toledo, Spain;2Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Cantoblanco, Madrid-28049, Spain
Abstract:

Background and Aims

Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis.

Methods

Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed.

Key Results and Conclusions

Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and satellite lineage initiation combine in several ways. This first systematic, comprehensive natural variation survey for stomatal abundance in A. thaliana reveals cryptic developmental genetic variation, and provides relevant relationships amongst stomatal traits and extreme or uncommon accessions as resources for the genetic dissection of stomatal development.
Keywords:Natural variation  Arabidopsis thaliana  stomatal abundance  pavement cell  stomatal lineage  satellite stomatal lineage  epidermis  development
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号