首页 | 本学科首页   官方微博 | 高级检索  
     


Susceptibility to antifungal agents of Candida sp. and biofilm formation
Authors:Ciok-Pater Emilia  Białucha Agata  Gospodarek Eugenia  Ostafin Agnieszka
Affiliation:Katedra i Zak?ad Mikrobiologii Collegium Medicum im. L. Rydygiera w Bydgoszczy Uniwersytet Miko?aja Kopernika w Toruniu.
Abstract:In recent years the increase in frequency of fungal infections with Candida sp. was noticed. These infections are connected with ability of Candida sp. to form biofilm on surfaces of biomaterials used in medicine. Furthermore fungal infections make serious therapeutic problems because ofbiofilm resistance to antifungal agents actually. The aim of the study was to evaluate the susceptibility to antifungal agents of Candida sp. and their ability to form biofilm on different biomaterials. 50 strains of Candida sp. isolated from patients of University Hospital No. 1 of dr A. Jurasz in Bydgoszcz were examined. API Candida (bioMérieux) tests were used to identify Candida sp. strains. The susceptibility of the yeast strains to antifungal agents was evaluated by ATB FUNGUS 2 INT (bioMérieux) tests. The susceptibility of examined strains to voriconazole, posaconazole, caspofungin and anidulafungin was assessed by means ofEtests (AB BIODISK) method employing drug concentrations from 0,002 to 32 microg/ml. All analysed strains were susceptible to amphotericin B and caspofungin. Biofilm formation on different biomaterials (silicon, latex, polychloride vinyl, polypropylene, nylon) was measured after 72 hour incubation at 37 degrees C. All examined yeasts formed biofilm on all analysed biomaterials. The highest number of strains formed biofilm on surface of polychloride vinyl: 23 (92,0%) by C. albicans strains and 24 (96,0%) Candida non-albicans strains. The lowest number of the strains formed biofilm on the surface of nylon: 12 (48,0%) of C. albicans strains and 9 (36,0%) of Candida non-albicans strains. The studied strains resistant to azoles and anidulafungin display stronger ability to form biofilm on surfaces of all analysed biomaterials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号