Non-B DNA conformations formed by long repeating tracts of myotonic dystrophy type 1, myotonic dystrophy type 2, and Friedreich's ataxia genes, not the sequences per se, promote mutagenesis in flanking regions |
| |
Authors: | Wojciechowska Marzena Napierala Marek Larson Jacquelynn E Wells Robert D |
| |
Affiliation: | Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Houston, Texas 77030, USA. |
| |
Abstract: | The expansions of long repeating tracts of CTG.CAG, CCTG.CAGG, and GAA.TTC are integral to the etiology of myotonic dystrophy type 1 (DM1), myotonic dystrophy type 2 (DM2), and Friedreich's ataxia (FRDA). Essentially all studies on the molecular mechanisms of this expansion process invoke an important role for non-B DNA conformations which may be adopted by these repeat sequences. We have directly evaluated the role(s) of the repeating sequences per se, or of the non-B DNA conformations formed by these sequences, in the mutagenic process. Studies in Escherichia coli and three types of mammalian (COS-7, CV-1, and HEK-293) fibroblast-like cells revealed that conditions which promoted the formation of the non-B DNA structures enhanced the genetic instabilities, both within the repeat sequences and in the flanking sequences of up to approximately 4 kbp. The three strategies utilized included: the in vivo modulation of global negative supercoil density using topA and gyrB mutant E. coli strains; the in vivo cleavage of hairpin loops, which are an obligate consequence of slipped-strand structures, cruciforms, and intramolecular triplexes, by inactivation of the SbcC protein; and by genetic instability studies with plasmids containing long repeating sequence inserts that do, and do not, adopt non-B DNA structures in vitro. Hence, non-B DNA conformations are critical for these mutagenesis mechanisms. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|