首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Seed fertilization, development, and germination in Hydatellaceae (Nymphaeales): Implications for endosperm evolution in early angiosperms
Authors:Rudall Paula J  Eldridge Tilly  Tratt Julia  Ramsay Margaret M  Tuckett Renee E  Smith Selena Y  Collinson Margaret E  Remizowa Margarita V  Sokoloff Dmitry D
Institution:Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK.
Abstract:New data on endosperm development in the early-divergent angiosperm Trithuria (Hydatellaceae) indicate that double fertilization results in formation of cellularized micropylar and unicellular chalazal domains with contrasting ontogenetic trajectories, as in waterlilies. The micropylar domain ultimately forms the cellular endosperm in the dispersed seed. The chalazal domain forms a single-celled haustorium with a large nucleus; this haustorium ultimately degenerates to form a space in the dispersed seed, similar to the chalazal endosperm haustorium of waterlilies. The endosperm condition in Trithuria and waterlilies resembles the helobial condition that characterizes some monocots, but contrasts with Amborella and Illicium, in which most of the mature endosperm is formed from the chalazal domain. The precise location of the primary endosperm nucleus governs the relative sizes of the chalazal and micropylar domains, but not their subsequent developmental trajectories. The unusual tissue layer surrounding the bilobed cotyledonary sheath in seedlings of some species of Trithuria is a belt of persistent endosperm, comparable with that of some other early-divergent angiosperms with a well-developed perisperm, such as Saururaceae and Piperaceae. The endosperm of Trithuria is limited in size and storage capacity but relatively persistent.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号