首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity
Authors:Zanne Amy E  Westoby Mark  Falster Daniel S  Ackerly David D  Loarie Scott R  Arnold Sarah E J  Coomes David A
Institution:Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121 USA.
Abstract:Woody stems comprise a large biological carbon fraction and determine water transport between roots and leaves; their structure and function can influence both carbon and hydrological cycles. While angiosperm wood anatomy and density determine hydraulic conductivity and mechanical strength, little is known about interrelations across many species. We compiled a global data set comprising two anatomical traits for 3005 woody angiosperms: mean vessel lumen area (ā) and number per unit area (N). From these, we calculated vessel lumen fraction (F = āN) and size to number ratio (S = ā/N), a new vessel composition index. We examined the extent to which F and S influenced potential sapwood specific stem conductivity (K(S)) and wood density (D; dry mass/fresh volume). F and S varied essentially independently across angiosperms. Variation in K(S) was driven primarily by S, and variation in D was virtually unrelated to F and S. Tissue density outside vessel lumens (D(N)) must predominantly influence D. High S should confer faster K(S) but incur greater freeze-thaw embolism risk. F should also affect K(S), and both F and D(N) should influence mechanical strength, capacitance, and construction costs. Improved theory and quantification are needed to better understand ecological costs and benefits of these three distinct dimensions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号