首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A kinetic characterization of the glycosyltransferase activity of Eschericia coli PBP1b and development of a continuous fluorescence assay
Authors:Schwartz Benjamin  Markwalder Jay A  Seitz Steven P  Wang Yi  Stein Ross L
Institution:Department of Chemical and Physical Sciences, Bristol-Myers Squibb Company, Wilmington, Delaware 19880, USA. Benjamin_2_Schwartz@gsk.com
Abstract:The bacterial cell wall is a polymer consisting of alternating N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) units, cross-linked via peptides appended to MurNAc. The final steps in the formation of cell wall, also referred to as murein, are catalyzed by high-molecular-weight, class A penicillin-binding proteins (PBPs). These bifunctional enzymes catalyze both glycosyltransfer, to form the carbohydrate backbone of murein, and transpeptidation, to form the interstrand peptide linkages. Using PBP1b from Eschericia coli, an in vitro kinetic characterization of the glycosyltransfer reaction was carried out. Initial studies with unlabeled substrate (Lipid II) revealed that activity is strongly influenced by DMSO, as well as metal and detergent. In addition, a continuous fluoresence assay was developed and used to determine the effect of pH on the reaction. A single basic residue was titrated, with a pK(a) of 7.0. Taken together, these data suggest a mechanism for PBP1b where the glycosyltransfer reaction is catalyzed by the concerted effect of an active site base to deprotonate the glycosyl acceptor and a divalent metal to assist departure of the leaving group of the glycosyl donor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号