首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Free amino acid pools as effectors of osmostic adjustment in different tissues of the freshwater shrimp macrobrachium olfersii (crustacea,decapoda) during long-term salinity acclimation
Authors:John C McNamara  José C Rosa  Lewis J Greene  Alessandra Augusto
Institution:1. mcnamara@ffclrp.usp.br;3. Centro Interdepartamental de Química de Proteínas , Faculdade de Medicina de Ribeir?o Preto, Universidade de S?o Paulo , Ribeir?o Preto 14040-901, Brazil
Abstract:To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and Na+] reach stable maxima within 24?h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24?h, diminishing to FW values. Nerve FAA increase 187% within 24?h, and remain elevated. Hemolymph FAA decrease (?75%) after 24?h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (?70%) decreases. Total FAA pools contribute 10–20% to intracellular (22–70?mmol/kg) and 0.5–2.4% to hemolymph (3–7?mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.
Keywords:Amino acids  Tissue hydration  Salinity acclimation  Osmoregulation  Ionic regulation  Macrobrachium  Palaemonid shrimp
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号