首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemoenzymatic synthesis of enantiopure 1,4-dihydropyridine derivatives
Authors:A Sobolev  G Duburs  Ae De Groot
Institution:1. Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703, HB, Wageningen, The Netherlands;2. Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia;3. Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
Abstract:1,4-Dihydropyridines possess a broad range of biological activities, such as the ability to control the influx of calcium into cells, as well as neuroprotective, antineurodegenerative, cognition and memory enhancing, anti-inflammatory, antiviral and many other properties. Chirality plays an important role in the biological activity of 1,4-dihydropyridines. The chemoenzymatic synthesis of 1,4-dihydropyridine derivatives in enantiopure form as the key intermediates for the synthesis of enantiopure drugs and chiral analogues of symmetrical drugs has become an advantageous alternative to the other synthetic methods. Hydrolytic enzymes, as efficient chemo-, regio- and stereoselective biocatalysts have been successfully applied for the asymmetrisation or kinetic resolution of various 1,4-dihydropyridine derivatives. Several synthetic strategies to overcome the inactivity of hydrolytic enzymes towards 1,4-dihydropyridine carboxylic acids have been developed during the last decade, often based on the introduction of a spacer between an enzymatically labile group and the 1,4-DHP nucleus. Good to excellent enantioselectivities can be obtained by careful optimisation of the reaction temperature and the organic (co)solvent used in the enzymatic transformations.
Keywords:enantiopure 1  4-dihydropyridines  enzyme-catalysed hydrolysis  transesterification  asymmetrisation  kinetic resolution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号