首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Effect of VA Mycorrhizal Infection and Phosphorus Status on Sunflower Hydraulic and Stomatal Properties
Authors:KOIDE  ROGER
Abstract:Koide, R. 1985. The effect of VA mycorrhizal infection and phosphorusstatus on sunflower hydraulic and stomatal properties.—J. exp. Bot. 36: 1087–1098. Mycorrhizal (M) and non-mycorrhizal (NM) sunflower plants weregrown in a soil of low phosphorus availability (with and withoutphosphorus amendment) and in a soil of moderate phosphorus availability(without phosphorus amendment). Using the Ohm's law analogyand measured leaf water potentials, stem water potentials, andtranspiration rates, hydraulic resistances were calculated forthe whole plant, leaf, and below leaf components. Mycorrhizalinfection (as high as 89%) was shown to have no effect on theintrinsic hydraulic properties of the soil/plant system overa wide range of transpiration rates in either soil when M andNM plants of equivalent root length were compared. When grownin the soil of moderate phosphorus availability, calculatedhydraulic resistances under given environmental conditions werethe same for M and NM plants, as were stomatal resistances andtranspiration rates. When grown in the soil of low phosphorusavailability, calculated values of hydraulic resistance werelower for M plants than for NM plants under given sets of environmentalconditions. These differences in calculated hydraulic resistancewere not due to a difference in the intrinsic hydraulic propertiesof M and NM plants. The differences were evident because stomatalresistances were lower and transpiration rates higher for Mplants and because hydraulic resistance varied inversely withtranspiration rate. When plants of significantly greater rootlength were compared to plants of lesser root length, the calculatedhydraulic resistances under given environmental conditions weremuch lower for the plants of greater root length. This differencewas largely due to a difference in the intrinsic hydraulic propertiesbetween large and small plants, and not because of differencesin transpiration rate. The elevated transpiration rates exhibitedby M plants were attributed to an enhanced phosphorus status.Short term phosphorus amendments made to phosphorus-deficientNM plants improved transpiration; transpiration rates were similarfor M and NM plants before NM plants became phosphorus-deficient,and phosphorus-amended M and NM plants had similar transpirationrates. The data are discussed in relation to other reports ofmycorrhizal influence on hydraulic and stomatal resistances.Possible mechanisms for the influence of infection on stomatalresistance are also briefly discussed. Key words: Hydraulic resistance, stomatal resistance, mycorrhizas
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号