首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Advanced radiogasometric method for the determination of the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates under steady-state photosynthesis
Authors:Tiit Pärnik  Olav Keerberg
Institution:Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
Abstract:An advanced radiogasometric method for the study of plant leaf CO2 exchange is presented. The method enables determination of the rates of CO2 fixation, photorespiration and respiration in the light under steady‐state photosynthesis and discrimination between primary and stored photosynthates as substrates of photorespiratory and respiratory decarboxylations. The method is based on the analysis of the time curves of 14CO2 evolution from labeled primary and stored photosynthates in leaves previously exposed to 14CO2. The molar rates of different decarboxylation reactions are calculated from the initial slopes of the curves taking into account the specific radioactivity of CO2 fed to leaves and/or evolved from leaves. To estimate the contribution of primary and stored photosynthates, the measurements of 14CO2 evolution are performed after feeding plant leaves for different periods with 14CO2. Photorespiration and respiration are distinguished on the basis of data obtained from measurements of 14CO2 evolution under normal (210 ml l−1) and low (15 ml l−1) concentrations of oxygen. A principally new method for the determination of the rate of intracellular refixation of respiratory CO2 has been developed. The method is based on the measurements of 14CO2 evolution from leaves into the medium of very high concentrations (30 ml l−1) of 12CO2, where the probability of refixation of 14CO2 evolved inside the cell is close to zero. The results obtained were comparable with the data derived from parallel refixation measurements by means of gasometric methods. As an example of application, the data on CO2 exchange in leaves of two contrasting groups of C3‐species, differing in the ability of starch accumulation, are presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号