首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal and Structural Stability of Adsorbed Proteins
Authors:Sumit Sharma  Sanat K. Kumar
Affiliation: Department of Chemical Engineering, Columbia University, New York, New York
Department of Chemistry, Columbia University, New York, New York
Abstract:Experimental evidence suggests that proteins adsorbed to hydrophobic surfaces at low coverages are stabilized relative to the bulk. For larger coverages, proteins unfold and form β-sheets. We performed computer simulations on model proteins and found that: 1), For weakly adsorbing surfaces, unfolded conformations lose more entropy upon adsorption than folded ones. 2), The melting temperature, both in the bulk and at surfaces, decreases with increasing protein concentration because of favorable interprotein interactions. 3), Proteins in the bulk show large unfolding free energy barriers; this barrier decreases at stronger adsorbing surfaces. We conjecture that typical experimental temperatures appear to be below the bulk melting temperature for a single protein, but above the melting temperature for concentrated protein solutions. Purely thermodynamic factors then explain protein stabilization on adsorption at low concentrations. However, both thermodynamic and kinetic factors are important at higher concentrations. Thus, proteins in the bulk do not denature with increasing concentration due to large kinetic barriers, even though the aggregated state is thermodynamically preferred. However, they readily unfold upon adsorption, with the surface acting as a heterogeneous catalyst. The thermal behavior of proteins adsorbed to hydrophobic surfaces thus appears to follow behavior independent of their chemical specificity.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号