首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanical Unfolding of Acylphosphatase Studied by Single-Molecule Force Spectroscopy and MD Simulations
Authors:Gali Arad-Haase  Silvia G Chuartzman  Shlomi Dagan  Maksim Kouza  Hung Tien Nguyen  Ziv Reich
Institution: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
Department of Physics, Michigan Technological University, Houghton, Michigan
§ Saigon Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
Abstract:Single-molecule manipulation methods provide a powerful means to study protein transitions. Here we combined single-molecule force spectroscopy and steered molecular-dynamics simulations to study the mechanical properties and unfolding behavior of the small enzyme acylphosphatase (AcP). We find that mechanical unfolding of AcP occurs at relatively low forces in an all-or-none fashion and is decelerated in the presence of a ligand, as observed in solution measurements. The prominent energy barrier for the transition is separated from the native state by a distance that is unusually long for α/β proteins. Unfolding is initiated at the C-terminal strand (βT) that lies at one edge of the β-sheet of AcP, followed by unraveling of the strand located at the other. The central strand of the sheet and the two helices in the protein unfold last. Ligand binding counteracts unfolding by stabilizing contacts between an arginine residue (Arg-23) and the catalytic loop, as well as with βT of AcP, which renders the force-bearing units of the protein resistant to force. This stabilizing effect may also account for the decelerated unfolding of ligand-bound AcP in the absence of force.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号