首页 | 本学科首页   官方微博 | 高级检索  
     


Cellular proteomes have broad distributions of protein stability
Authors:Ghosh Kingshuk  Dill Ken
Affiliation: Department of Physics and Astronomy, University of Denver, Denver, Colorado
Department of Pharmaceutical Chemistry, University of California, San Francisco, California
Abstract:Biological cells are extremely sensitive to temperature. What is the mechanism? We compute the thermal stabilities of the whole proteomes of Escherichia coli, yeast, and Caenorhabditis elegans using an analytical model and an extensive database of stabilities of individual proteins. Our results support the hypothesis that a cell''s thermal sensitivities arise from the collective instability of its proteins. This model shows a denaturation catastrophe at temperatures of 49–55°C, roughly the thermal death point of mesophiles. Cells live on the edge of a proteostasis catastrophe. According to the model, it is not that the average protein is problematic; it is the tail of the distribution. About 650 of E. coli''s 4300 proteins are less than 4 kcal mol−1 stable to denaturation. And upshifting by only 4° from 37° to 41°C is estimated to destabilize an average protein by nearly 20%. This model also treats effects of denaturants, osmolytes, and other physical stressors. In addition, it predicts the dependence of cellular growth rates on temperature. This approach may be useful for studying physical forces in biological evolution and the role of climate change on biology.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号