首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting Ion Binding Properties for RNA Tertiary Structures
Authors:Zhi-Jie Tan
Institution: Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures, Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, Missouri
Abstract:Recent experiments pointed to the potential importance of ion correlation for multivalent ions such as Mg2+ ions in RNA folding. In this study, we develop an all-atom model to predict the ion electrostatics in RNA folding. The model can treat ion correlation effects explicitly by considering an ensemble of discrete ion distributions. In contrast to the previous coarse-grained models that can treat ion correlation, this new model is based on all-atom nucleic acid structures. Thus, unlike the previous coarse-grained models, this new model allows us to treat complex tertiary structures such as HIV-1 DIS type RNA kissing complexes. Theory-experiment comparisons for a variety of tertiary structures indicate that the model gives improved predictions over the Poisson-Boltzmann theory, which underestimates the Mg2+ binding in the competition with Na+. Further systematic theory-experiment comparisons for a series of tertiary structures lead to a set of analytical formulas for Mg2+/Na+ ion-binding to various RNA and DNA structures over a wide range of Mg2+ and Na+ concentrations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号