首页 | 本学科首页   官方微博 | 高级检索  
     


Probing the nucleus model for oligomer formation during insulin amyloid fibrillogenesis
Authors:Pease Leonard F  Sorci Mirco  Guha Suvajyoti  Tsai De-Hao  Zachariah Michael R  Tarlov Michael J  Belfort Georges
Affiliation: National Institute of Standards and Technology, Gaithersburg, Maryland
Departments of Chemical Engineering, Pharmaceutics & Pharmaceutical Chemistry, and Gastroenterology, University of Utah, Salt Lake City, Utah
§ Department of Chemical and Biological Engineering, and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
Department of Mechanical Engineering, University of Maryland, College Park, Maryland
Abstract:We find evidence for a direct transition of insulin monomers into amyloid fibrils without measurable concentrations of oligomers or protofibrils, suggesting that fibrillogenesis may occur directly from assembly of denaturing insulin monomers rather than by successive transitions through protofibril nuclei. To support our finding, we obtain size distributions using electrospray differential mobility analysis (ES-DMA), which provides excellent resolution to clearly distinguish among small oligomers and rapidly generates statistically significant size distributions. The distributions detect an absence of significant peaks between 6 nm and 17 nm as the monomer reacts into fibers—exactly the size range observed by others for small-angle-neutron-scattering-measured intermediates and for circular supramolecular structures. They report concentrations in the nanomolar range, whereas our limit of detection remains three-orders-of-magnitude lower (<5 pmol/L). This finding, along with the lack of significant increases in the β-sheet content of monomers using circular dichroism, suggests monomers do not first structurally rearrange and accumulate in a β-rich state but react and reorganize at the growing fiber's tip. These results quantitatively inform reaction-based theories of amyloid fiber formation and have implications for neurodegenerative, protein conformation ailments including Alzheimer's disease and bovine spongiform encephalopathy.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号