Single-molecule force spectroscopy of cartilage aggrecan self-adhesion |
| |
Authors: | Harder Alexander Walhorn Volker Dierks Thomas Fernàndez-Busquets Xavier Anselmetti Dario |
| |
Affiliation: | † Experimental Biophysics and Applied Nanoscience, Physics Faculty, Bielefeld University, Bielefeld, Germany ‡ Biochemistry I, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany § Biomolecular Interactions Team, Nanobioengineering Group, Institute for Bioengineering of Catalonia, University of Barcelona, Barcelona, Spain ¶ Nanoscience and Nanotechnology Institute, Barcelona Science Park, University of Barcelona, Barcelona, Spain |
| |
Abstract: | We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of lp = 0.31 ± 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of τ = 7.9 ± 4.9 s and a reaction bond length of xβ = 0.31 ± 0.08 nm. Whereas the xβ-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|