首页 | 本学科首页   官方微博 | 高级检索  
     


Diverse effects of insulin-induced hyperpolarization on 3-O-methyl-D-glucose (3-O-MG) transport in frog skeletal muscles
Authors:Y Marunaka  K Murayama  H Kitasato
Abstract:It has been suggested that the insulin-induced hyperpolarization might be a mediator of the stimulatory action of insulin on glucose transport. The purpose of the present study was to investigate the relationship between the insulin-induced hyperpolarization and the stimulatory action of insulin on glucose transport in skeletal muscle. Satorius muscles dissected from bullfrogs (Rana catesbeiana) were used. Insulin induced a hyperpolarization of the membrane and an increase in the 3-O-Methyl-D-glucose (3-O-MG) uptake and extrusion. In the presence of valinomycin, insulin had no significant effect on the membrane potential. Insulin still had the stimulatory action on both the 3-O-MG uptake and extrusion even in the presence of valinomycin, under whose condition insulin had no significant effect on the membrane potential. The magnitude of the stimulatory action of insulin on the 3-O-MG uptake in the presence of valinomycin was smaller than that in the absence of valinomycin. The magnitude of the stimulatory action of insulin on the 3-O-MG extrusion was, on the contrary, larger than that in the absence of valinomycin. The abolishment of the insulin-induced hyperpolarization decreased the 3-O-MG uptake and increased the 3-O-MG extrusion. The observation in the present study concludes that insulin has two different actions on glucose transport. One of them is developed through the insulin-induced hyperpolarization, which increases the 3-O-MG uptake and decreases the 3-O-MG extrusion. The other action is irrelevant of the insulin-induced hyperpolarization and stimulates both the 3-O-MG uptake and extrusion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号