首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium and dairy product modulation of lipid utilization and energy expenditure
Authors:Teegarden Dorothy  White Kimberly M  Lyle Roseann M  Zemel Michael B  Van Loan Marta D  Matkovic Velimir  Craig Bruce A  Schoeller Dale A
Institution:Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana, USA. dteegard@pudue.edu
Abstract:Objective: The purpose of this study was to investigate the impact of dietary calcium or dairy product intake on total energy expenditure (TEE), fat oxidation, and thermic effect of a meal (TEM) during a weight loss trial. Methods and Procedures: The intervention included a prescribed 500‐kcal deficit diet in a randomized placebo‐controlled calcium or dairy product intervention employing twenty‐four 18 to 31‐year‐old (22.2 ± 3.1 years, mean ± s.d.) overweight women (75.5 ± 9.6 kg). TEM and fat oxidation were measured using respiratory gas exchange after a meal challenge, and TEE was measured by doubly labeled water. Fat mass (FM) and lean mass (fat‐free mass (FFM)) were measured by dual‐energy X‐ray absorptiometry. Subjects were randomized into one of these three intervention groups: (i) placebo (<800 mg/day calcium intake); (ii) 900 mg/day calcium supplement; (iii) three servings of dairy products/day to achieve an additional 900 mg/day. Results: There were no group effects observed in change in TEE; however, a group effect was observed for fat oxidation after adjusting for FFM (P = 0.02). The treatment effect was due to an increase in fat oxidation in the calcium‐supplemented group of 1.5 ± 0.6 g/h, P = 0.02. Baseline 25‐hydroxyvitamin D (25OHD) was positively correlated with TEM (R = 0.31, P = 0.004), and trended toward a correlation with fat oxidation (P = 0.06), independent of group assignment. Finally, the change in log parathyroid hormone (PTH) was positively correlated with the change in trunk FM (R = 0.27, P = 0.03). Discussion: These results support that calcium intake increases fat oxidation, but does not change TEE and that adequate vitamin D status may enhance TEM and fat oxidation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号