首页 | 本学科首页   官方微博 | 高级检索  
     


Taurine- and FMRFamide-dependent modulation of receptor- and voltage-gated currents by cerebrolysine in molluscan neurons
Authors:V. A. Dyatlov
Affiliation:(1) Bogomolets Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
Abstract:The action of cerebrolysine, a biogenic stimulator, on the receptor- and voltage-gated ionic currents was studied in identifiedHelix pomatia neurons. Cerebrolysine reversibly suppressed the acetylcholine (ACh)- and glutamate (GLU)-induced chloride currents in some neurons (LP11, B4, E12) with a latency of 9±3 sec, while not affecting these currents in other neurons. The suppressing effect of cerebrolysine on the voltage-gated sodium and calcium currents was also selective. There were ldquofastrdquo and ldquoslowrdquo phases, with latencies of 52±8 sec and 5±1 min, respectively, in the cerebrolysine effect on the voltage-gated sodium current. The effect of cerebrolysine on the sodium current during the ldquofastrdquo suppression phase could be simulated with FMRFamide (10–5 M), while those exerted on the ACh- and GLU-induced currents could be simulated with taurine (10–6 M). The effects of cerebrolysine and the above substances were non-additive. These facts allow us to suggest that both taurine and FMRFamide (or its fragment) are involved in the mechanism of posttraumatic and postsurgical curative effects of cerebrolysine.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 190–196, May–June, 1994.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号