首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles
Authors:Peter A  Rolf W  Jorit J  Guus C
Institution:

aInstituut voor Fundamentele en Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, Van den Boechorststraat 9, 1081 BT Amsterdam, The Netherlands

bIntegrated Biomedical Engineering for Restoration of Human Function, Instituut voor Biomedische Technologie, Faculteit Constructieve Technische Wetenschappen, Universiteit Twente, Enschede, The Netherlands

Abstract:The purpose of the present study was to test the hypothesis that myofascial force transmission may not be limited by compartmental boundaries of a muscle group to synergists. Muscles of the anterior tibial compartment in rat hindlimb as well as of the neighbouring peroneal compartment (antagonistic muscles) were excited maximally. Length–force data, based on proximal lengthening, of EDL, as well as distal lengthening of the tibial muscles (TA + EHL) and the peroneal muscle group (PER) were collected independently, while keeping the other two muscle groups at a constant muscle–tendon complex length. Simultaneously measured, distal and proximal EDL active forces were found to differ significantly throughout the experiment. The magnitude of this difference and its sign was affected after proximal lengthening of EDL itself, but also of the tibial muscle complex and of the peroneal muscle complex. Proximal lengthening of EDL predominantly affected its synergistic muscles within the anterior crural compartment (force decrease <4%). Lengthening of either TA or PER caused a decrease in distal EDL isometric force (by 5–6% of initial force). It is concluded also that mechanisms for mechanical intermuscular interaction extend beyond the limits of muscle compartments in the rat hindlimb. Even antagonistic muscles should not be considered fully independent units of muscular function.

Particular, strong mechanical interaction was found between antagonistic tibial anterior muscle and peroneal muscle complexes: Lengthening of the peroneal complex caused tibial complex force to decrease by approximately 25%, whereas for the reverse a 30% force decrease was found.

Keywords:Rat  Anterior tibial compartment  Peroneal compartment  Antagonistic  Muscle force  Myofascial force transmission  Connective tissue  Extracellular matrix  Mechanical interaction  Proximo-distal force difference
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号