Epithelial bridging of the primary palate: I. Characterization of sub-cultured epithelial cells |
| |
Authors: | T L Gibson A Bolognese C Maddrell A J Steffek D P Forbes |
| |
Affiliation: | Department of Orthodontics, Northwestern University Dental School, Chicago, IL 60611. |
| |
Abstract: | Primary palatogenesis involves an intricate array of events. Cell migration, proliferation, differentiation, programmed death, and fusion occur. Prior to fusion, the morphology of the epithelium undergoes marked changes. Epithelial projections form and extend across the fusion site attaching by filopodia to the opposite prominence. By appearance, the epithelium plays a critical role in facial development. In order to monitor epithelial activities, a study was done to isolate and characterize epithelial cells derived from the primary palate. The primary palate was microdissected from day 13 Sprague-Dawley rat embryos, and the epithelium and mesenchyme were separated by enzymatic digestion with a 3% trypsin-pancreatin solution (3:1). All explants were cultured in Dulbecco's modified Eagle's medium (DMEM) and Ham's F-12 medium (1:1) supplemented with 10% fetal calf serum (FCS), 20 ng/ml epidermal growth factor (EGF), and antibiotics. Explant cells were gathered by trypsin harvesting and sub-cultured. These sub-cultured cells were further characterized. Transmission and scanning electron microscopy showed that the cells retained many morphological features observed in vivo. In passaged cells, type IV collagen, laminin, and cytokeratins were visualized by immunocytochemistry. Gel electrophoresis analysis of the water-insoluble extracts demonstrated major bands of proteins of 50 kD and 44 kD that were synthesized by the epithelial cells but not by the mesenchymal cells. These cytokeratin types are suggestive of a simple undifferentiated embryonic epithelium. The effect of all-trans retinoic acid (RA) on cell number and [3H]-proline incorporation was assessed. At [10(-4)M] and [10(-6)M] retinoic acid resulted in significant inhibition in cell proliferation and amount of proline incorporated, with the greater inhibition occurring in the mesenchymal cells. In the concentrations studied, retinoic acid has an inhibitory effect on the two differently derived cell types. This study established that sub-cultured epithelial cells maintain their phenotype and can be used to study fusion processes. Part 2 will demonstrate how the morphology of the epithelial cells can be modified to produce the changes that are observed during fusion of the primary palate. |
| |
Keywords: | |
|
|