首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Geometry, thermodynamics, and protein
Authors:Yi Fang  Junmei Jing
Institution:Centre for Bioinformation Science, Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia
Abstract:We derive a new continuous free energy formula for protein folding. We obtain the formula first by adding hydrophobic effect to a classical free energy formula for cavities in water. We then obtain the same formula by geometrically pursuing the structure that fits best the well-known global geometric features of native structures of globular proteins: 1. high density; 2. small surface area; 3. hydrophobic core; 4. forming domains for long polypeptide chains. Conformations of a protein are presented as an all atom CPK model View the MathML source where each atom is a ball B(xi,ri). All conformations satisfy generally defined steric conditions. For each conformation P of a globular protein, there is a closed thermodynamic system ΩPP bounded by the molecular surface MP. Both methods derive the same free energy aV(P)+bA(P)+cW(P), where a,b,c>0, V(P), A(P), and W(P) are volume of ΩP, area of MP, and area of the hydrophobic surface WPMP, which quantifies hydrophobic effect.Minimizing W(P) is sufficient to produce statistically significant native like secondary structures and hydrogen bonds in the proteins we simulated.
Keywords:Hydrophobic effect  Hydrophobic core  Hydrophobic area  Volume  Area  Hydrogen bond  Constrained minimization  Free energy  Globular protein
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号