首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Production of hyperdorsal larvae by exposing uncleaved Xenopus eggs to a centrifugal force directed from the animal pole to the vegetal pole
Authors:Kazuhiro Takano  Mika Kikkawa  Atsunori Shinagawa
Institution:Department of Biology, Faculty of Science, Yamagata University, Yamagata 990, Japan.
Abstract:Exposure of uncleaved Xenopus eggs to a centrifugal force directed from the animal pole to the vegetal pole produces larvae with enhanced dorsal structures, which resemble 'hyperdorso-anterior' larvae produced by D2O-treatment at 0.3 normalized time (NT). Optimal conditions are 70 g for 6 min at 20% of the first cell cycle (0.2 NT). Exposure before removal of vegetal pole cortical cytoplasm, which we find has an effect of eliminating dorsal structures, protects eggs from losing their ability to form dorsal axial structures upon removal. In contrast, exposure after a slight ultraviolet (UV)-irradiation, which has virtually no effect on dorsal development, produces larvae with heavily reduced dorsal structures, which resemble 'ventralized' larvae produced by heavy UV-irradiation. Interestingly, none of these treatments prevents cortical rotation. Morphological and histological examinations reveal that exposure to the force causes displacement of both cortical and deep egg components from around the vegetal pole to subequatorial regions. We conclude that exposure to the centrifugal force enhances dorsal structures by displacing dorsal determinants from around the vegetal pole to subequatorial regions broader than normal. This is the first experiment in which displacement of egg components, by methods independent of the rotation, are shown to perturb larval body pattern.
Keywords:axis specification  cortical rotation  dorsal determinants  hyperdorsalization              Xenopus laevis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号