首页 | 本学科首页   官方微博 | 高级检索  
     


Pex, analytical tools for PDB files. II. H-Pex: noncanonical H-bonds in alpha-helices
Authors:Thomas A  Benhabiles N  Meurisse R  Ngwabije R  Brasseur R
Affiliation:Institut National de la Santé et de la Recherche Médicale Unité, Paris Cedex, France. thomas.a@fsagx.ac.be
Abstract:We use the H-Pex (Thomas et al., this issue) to analyze the main chain interactions in 131 proteins. In antiparallel beta-sheets, the geometry of the N...O bond is: median N...O distances, 2.9 SA, C==O...N angles at 154 degrees and the C alpha--C==O...H angles are dispersed around 3 degrees. In some instances, the other side of the C==O axis is occupied by a HC alpha. As recently supported by Vargas et al. (J Am Chem Soc 2000;122:4750-4755) C alpha H...O and NH...O could cooperate to sheet stability. In alpha-helices, the main chain C==O interact with the NH of their n + 4 neighbor on one side, and with a C beta H or C gamma H on the other side. The median O...N distance (3.0 A) and C==N angle (147 degrees) suggest a canonical H-bond, but the C alpha--C==O...H dihedral angle invalidates this option, since the hydrogen attacks the oxygen at 122 degrees, i.e., between the sp(2) and pi orbitals. This supports that the H-bond is noncanonical. In many instances, the C gamma H or the C beta H of the n + 4 residue stands opposite to the NH with respect to the oxygen. Therefore, we propose that, in alpha-helices, the C gamma H or C beta H and the NH of the n + 4 residue hold the oxygen like an electrostatic pincher. Proteins 2001;43:37-44.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号